椭圆离心率越大越圆还是扁_椭圆离心率

时间:2023-06-06 01:27:47       来源:互联网


(资料图)

1、依题,直线AF过A(0,b) F(-c,0)所以其斜率为:k=b/cAQ垂直于AF,所以AQ斜率为:k=-c/b所以AQ方程为:y-b=(-c/b)x令y=0,解得:x=b^2/c 所以P坐标(b^2/c,0)联立AQ方程和椭圆方程得:b^2x^2+a^2*(b^2-2cx+c^2/b^2*x^2)=a^2b^2所以:x1+x2=(2a^2*c)/[b^2+(a^2c^2/b^2)] 因为方程有一根为0所以Q横坐标为=(2a^2*c)/[b^2+(a^2c^2/b^2)]依题,根据比例性质,(b^2/c):{(2a^2*c)/[b^2+(a^2c^2/b^2)]}=8:(8+5)另外b^2=a^2-c^2 代入上式,得:13(a^2-c^2)/c = 8*{2a^2*c)/[a^2-c^2+(a^2c^2)/(a^2-c^2)]}化简可得:3a^2c^2=13(a^2-c^2)^2即:13a^4-29a^2c^2+13c^4=0解得:。

2、额,貌似计算出问题了,方法大致就是这样,没仔细想,不知道有没更好的方法第二步:思路,因为AQ垂直AF,所以圆心在FQ中点上,半径就是FQ长度一半这样问题转化为FQ中点到直线l的距离等于FQ长度的一半,然后联立解答吧时间有限,只能这么回答了,见谅如果有疑问再说吧。

本文就为大家分享到这里,希望小伙伴们会喜欢。

关键词: